Abstract

The kinetics of pyrolysis of CF3CHFCF3 have been studied in dilute mixtures (0.5 and 3 mol %) in argon in a single-pulse shock tube over the temperature range of 1200−1500 K, residence times behind the reflected shock of between 650 and 850 μs, and pressures between 16 and 18 atm. Fluorinated products were quantified with gas chromatography and Fourier transform infrared spectroscopy; identification of unknown fluorocarbons and hydrofluorocarbons was performed with gas chromatography−mass spectrometry. The most significant products detected were C2F6, CF2CHF, C2F4, C3F6, cyclo-C3F6, and CF3CHFCF2H. Traces of CF3H, CF4, C2F5H, C3F8, C4F6, and isomers of C4F8 were also identified. A detailed kinetic reaction scheme is presented to model the experimental reactant and product yield profiles as a function of temperature. The results of modeling showed that the major initiation reaction was the C−C bond fission reaction. The abstraction of the secondary H atom by F atoms was also predicted to be important, wher...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.