Abstract

The shock structure in a gas mixture undergoing a bimolecular chemical reaction is studied by means of a reactive kinetic relaxation model. The relevant nonlinear integrodifferential equations are numerically solved in one space dimension with upstream and downstream asymptotic equilibrium conditions satisfying the reactive Rankine–Hugoniot relations and entropy condition. Numerical results are presented, emphasizing the role of Mach number, upstream concentration fractions, and change in the chemical composition across the shock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.