Abstract

Choosing the equipment with good shock-resistant performance and taking shock protection measures while designing the onboard settings, the safety of onboard settings can be assured when warships, especially submarine subjected to non-contact underwater explosion, that is, these means can be used to limit the rattlespace (i.e., the maximum displacement of the equipment relative to the base) and the peak acceleration experienced by the equipment. Using shock-resistant equipments is one of shock protection means. The shock-resistant performance of the shock-resistant equipments should be verified in the design phase of the equipments. The shock design analysis methods used before and now includes shock design number method (static g-method), dynamic analysis in the time domain and dynamic design analysis method (DDAM). The FEA (Finite Element Analysis) software, for example, MSC.NASTRAN®, can be used for shock design analysis of the shock-resistant equipments. MSC.NASTRAN are used for shock design analysis of floating raft vibration isolating equipment with dynamic analysis method in the time domain in this paper, and the analysis results are in agreement with the test results. The shock design analysis method used in this paper can be used to analyze the shock-resistant performance of onboard shock-resistant equipments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.