Abstract

Ship trajectory prediction based on Automatic Identification System (AIS) data has attracted increasing interest as it helps prevent collision accidents and eliminate potential navigational conflicts. Therefore, it is necessary and urgent to conduct a systematic analysis of all the prediction methods to help reveal their advantages to ensure safety at sea in different scenarios. It is particularly important and significant within the context of unmanned ships forming a new hybrid maritime traffic together with manned ships in the future. This paper aims to conduct a comparative analysis of the up-to-date ship trajectory prediction algorithms based on machine learning and deep learning methods. To do so, five classical machine learning methods (i.e., Kalman Filter, Gaussian Process Regression, Support Vector Regression, Random Forest, and Back Propagation Network) and eight deep learning methods (i.e., Recurrent Neural Networks, Long Short-Term Memory, Bi-directional Long Short-Term Memory, Gate Recurrent Unit, Bi-directional Gate Recurrent Unit, Sequence to Sequence, Spatio-Temporal Graph Convolutional Network, and Transformer) are thoroughly analysed and compared from the algorithm essence and applications to excavate their features and adaptability for manned and unmanned ships. The findings reveal the characteristics of various prediction methods and provide valuable implications for different stakeholders to guide the best-fit choice of a particular method as the solution under a specific circumstance. It also makes contributions to the extraction of the research difficulties of ship trajectory prediction and the corresponding solutions that are put forward to guide the development of future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.