Abstract

Under the complex oceanic environment, robust and effective feature extraction is the key issue of ship radiated noise recognition. Since traditional feature extraction methods are susceptible to the inevitable environmental noise, the type of vessels, and the speed of ships, the recognition accuracy will degrade significantly. Hence, we propose a robust time-frequency analysis method which combines resonance-based sparse signal decomposition (RSSD) and Hilbert marginal spectrum (HMS) analysis. First, the observed signals are decomposed into high resonance component, low resonance component, and residual component by RSSD, which is a nonlinear signal analysis method based not on frequency or scale but on resonance. High resonance component is multiple simultaneous sustained oscillations, low resonance component is nonoscillatory transients, and residual component is white Gaussian noises. According to the low-frequency periodic oscillatory characteristic of ship radiated noise, high resonance component is the purified ship radiated noise. RSSD is suited to noise suppression for low-frequency oscillation signals. Second, HMS of high resonance component is extracted by Hilbert-Huang transform (HHT) as the feature vector. Finally, support vector machine (SVM) is adopted as a classifier. Real audio recordings are employed in the experiments under different signal-to-noise ratios (SNRs). The experimental results indicate that the proposed method has a better recognition performance than the traditional method under different SNRs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.