Abstract

In 1973, Shimura (Ann. Math. (2) 97:440–481, 1973) introduced a family of correspondences between modular forms of half-integral weight and modular forms of even integral weight. Earlier, in unpublished work, Selberg explicitly computed a simple case of this correspondence pertaining to those half-integral weight forms which are products of Jacobi’s theta function and level one Hecke eigenforms. Cipra (J. Number Theory 32(1):58–64, 1989) generalized Selberg’s work to cover the Shimura lifts where the Jacobi theta function may be replaced by theta functions attached to Dirichlet characters of prime power modulus, and where the level one Hecke eigenforms are replaced by more generic newforms. Here we generalize Cipra’s results further to cover theta functions of arbitrary Dirichlet characters multiplied by Hecke eigenforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.