Abstract

Microwave (MW) thermal therapy has been widely used for the treatment of cancer in clinics, but it still shows limited efficacy and a high recurrence rate owing to non-selective heat delivery and thermo-resistance. Regulating glycolysis shows great promise to improve MW thermal therapy since glycolysis plays an important role in thermo-resistance, progression, metabolism, and recurrence. Herein, we developed a delivery nanosystem of shikonin (SK)-loaded and hyaluronic acid (HA)-modified hollow Fe-MOF (HFM), HFM@SK@HA, as an efficient glycolysis-meditated agent to improve the efficacy of MW thermal therapy. The HFM@SK@HA nanosystem shows a high SK loading capacity of 31.7 wt %. The loaded SK can be effectively released from the HFM@SK@HA under the stimulation of an acidic tumor microenvironment and MW irradiation, overcoming the intrinsically low solubility and severe toxicity of SK. We also find that the HFM@SK@HA can not only greatly improve the heating effect of MW in the tumor site but also mediate MW-enhancing dynamic therapy efficiency by catalyzing the endogenous H2O2 to generate reactive oxygen species (ROS). As such, the MW irradiation treatment in the presence of HFM@SK@HA in vitro enables a highly improved anti-tumor efficacy due to the combined effect of released SK and generated ROS on inhibiting glycolysis in cancer cells. Our in vivo experiments show that the tumor inhibition rate is up to 94.75% ± 3.63% with no obvious recurrence during the 2 weeks after treatment. This work provides a new strategy for improving the efficacy of MW thermal therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.