Abstract
We consider the family of all the Cellular Automata (CA) sharing the same local rule but have different memory. This family contains also all the CA with memory m ≤ 0 (one-sided CA) which can act both on A ℤ and on A ℕ. We study several set theoretical and topological properties for these classes. In particular we investigate if the properties of a given CA are preserved when we consider the CA obtained by changing the memory of the original one (shifting operation). Furthermore we focus our attention to the one-sided CA acting on A ℤ starting from the one-sided CA acting on A ℕ and having the same local rule (lifting operation). As a particular consequence of these investigations, we prove that the long-standing conjecture [Surjectivity \(\Rightarrow\) Density of the Periodic Orbits (DPO)] is equivalent to the conjecture [Topological Mixing \(\Rightarrow\) DPO].Keywordsdiscrete time dynamical systemscellular automatatopological dynamicsdeterministic chaos
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.