Abstract

This paper considers shifted inverse determinant sums arising from the union bound of the pairwise error probability for space-time codes in multiple-antenna fading channels. Previous work by Vehkalahti et al. focused on the approximation of these sums for low multiplexing gains, providing a complete classification of the inverse determinant sums as a function of constellation size for the most well-known algebraic space-time codes. This work aims at building a general framework for the study of the shifted sums for all multiplexing gains. New bounds obtained using dyadic summing techniques suggest that the behavior of the shifted sums does characterize many properties of a lattice code such as the diversity-multiplexing gain trade-off, both under maximum-likelihood decoding and infinite lattice naive decoding. Moreover, these bounds allow to characterize the signal-to-noise ratio thresholds corresponding to different diversity gains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.