Abstract
A laboratory scale nutrient removal activated sludge system coupled with an anaerobic side-stream reactor was operated for 300 days treating real urban wastewater. A significant decrease in sludge production was obtained increasing the anaerobic solid retention time (SRTASSR) and decreasing the sludge interchange ratio (IR). In this study, the microbial community structure was analyzed and compared with the sludge reduction performance. Quantitative polymerase chain reaction analyses encoding 16 ribosomal RNA and functional genes revealed a wide diversity of phylogenetic groups in each experimental period, resulting from long solids retention time and recirculation of sludge under aerobic, anoxic and anaerobic conditions. However, decreasing SRTASSR from 10 to 2.5d and increasing IR from 27 to 100%, an increasing selection of both fermenting bacteria able to release extracellular polymeric substances and hydrolyze organic matter and slow growing bacteria involved in nutrient removal were detected and linked to the sludge reduction mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.