Abstract

The aim of this study was to investigate divergence of bacteria degrading model proteins of food-processing wastewater. Gelatin and gluten were used as substrate to represent animal and plant proteins from food wastes, respectively. The inocula were obtained from eight full-scale anaerobic digestion reactors. Food-to-microorganism ratio was 3 g chemical oxygen demand equivalent of substrate per 1 g volatile suspended solids of inoculum. A first-order reaction model revealed reaction constants ranged 1.34 ≤ k ≤ 2.30 d−1 for gelatin and 0.63 ≤ k ≤ 1.69 d−1 for gluten. Metagenomic analysis of 16s rRNA sequences showed that dominant bacteria after gelatin degradation batch were different for each inocula. Klebsiella aerogenes, Hathewaya, Peptoclostridium, or Clostridium collagenovorans were most abundant. Klebsiella aerogenes was the most abundant species after gluten degradation for all inocula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.