Abstract

The microbially- and chemically-mediated redox process is critical in controlling the fate of vanadium (V) in tailing environment. Although the microbial reduction of V has been widely studied, the coupled biotic reduction mediated by beneficiation reagents and the underlying mechanism remain unclear. Herein, the reduction and redistribution of V in V-containing tailings and Fe/Mn oxide aggregates mediated by Shewanella oneidensis MR-1 and oxalic acid were explored. The dissolution of Fe-(hydr)oxides by oxalic acid promoted the microbe-mediated V release from solid-phase. After 48-day of reaction, the dissolved V concentrations in the bio-oxalic acid treatment reached maximum values of 1.72 ± 0.36 mg L–1 and 0.42 ± 0.15 mg L–1 in the tailing system and the aggregate system, respectively, significantly higher than those in control (0.63 ± 0.14 mg L–1 and 0.08 ± 0.02 mg L–1). As the electron donor, oxalic acid enhanced the electron transfer process of S. oneidensis MR-1 for V(V) reduction. The mineralogical characterization of final products indicates that S. oneidensis MR-1 and oxalic acid promoted solid-state conversion from V2O5 to NaV6O15. Collectively, this study demonstrates that microbe-mediated V release and redistribution in solid-phase were promoted by oxalic acid, suggesting that the role of organic agents for the V biogeochemical cycle in natural systems deserves greater attention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.