Abstract

Chromatin insulators are DNA-protein complexes that regulate chromatin structure and gene expression in a wide range of organisms. These complexes also harbor enhancer blocking and barrier activities. Increasing evidence suggests that RNA molecules are integral components of insulator complexes. However, how these RNA molecules are involved in insulator function remains unclear. The Drosophila RNA-binding protein Shep associates with the gypsy insulator complex and inhibits insulator activities. By mutating key residues in the RRM domains, we generated a Shep mutant protein incapable of RNA-binding, and this mutant lost the ability to inhibit barrier activity. In addition, we found that one of many wildtype Shep isoforms but not RRM mutant Shep was sufficient to repress enhancer blocking activities. Finally, wildtype Shep rescued synthetic lethality of shep, mod(mdg4) double-mutants and developmental defects of shep mutant neurons, whereas mutant Shep failed to do so. These results indicate that the RNA-binding ability of Shep is essential for its ability to antagonize insulator activities and promote neuronal maturation. Our findings suggest that regulation of insulator function by RNA-binding proteins relies on RNA-mediated interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.