Abstract

Radiolitid biostromes in the Upper Cretaceous of Austria and Italy record a marked taphonomic loss controlled mainly by the composition of the biocoenosis, by the density of rudist colonization, by the style of radiolitid shell disintegration and by early diagenetic processes. Radiolitid shells consisted of a calcitic ostracum and an originally aragonitic hypostracum. The attached valve of most radiolitids was built of (1) an outermost ostracal layer of delicate calcite lamellae, (2) a thick layer of ‘boxwork ostracum’ built of radial funnel plates and cell walls, (3) a thin, inner ‘ostracal layer 3’ of thick-walled boxwork, and (4) the hypostracum that formed the innermost shell layer. The attached valve disintegrated by spalling of radial funnel plates of layer 2, and by selective removal of the boxwork ostracum. In the free valve, the ostracum consisted of two layers: (a) an inner, lid-shaped layer of dense calcite, and (b) an outer layer composed of calcite lamellae. The free valve disintegrated by spalling into ostracal and hypostracal portions, by spalling of the ostracum into layers a and b, and by disintegration of layer b into packages of calcite lamellae and individual lamellae. The specific style of disintegration of the radiolitids was aided or induced by discontinuities in shell structure. Lamellar fragments from the ostracum of the upper valve and from the radial funnel plates of the lower valve locally are abundant in free-valve-funnel-plate floatstones that comprise the matrix of or occur in lenses within radiolitid biostromes. In biostromes with an open parautochthonous fabric, selective removal of the boxwork ostracum of the attached valve occurred by mechanical spalling and, most probably, by early diagenetic dissolution. Complete removal of the boxwork ostracum yielded thin, relict shells composed of the ‘ostracal layer 3’ and the hypostracum. During early diagenesis, the hypostracum was replaced by blocky calcite spar, or was dissolved and became filled by internal sediments. The combination of both selective removal of boxwork ostracum and early diagenetic dissolution of aragonite locally resulted in the formation of ghost biostromes that entirely or largely consist of faint relics of radiolitids. The syndepositional formation of radiolitid shell relics and the presence of radiolitid ghost biostromes produced by bios-tratinomic and early diagenetic processes show that rudist biostromes can undergo marked taphonomic loss during fossilization. The presence of ghost biostromes with a burrowed, open parautochthonous rudist fabric indicates that the final preservation of a rudist biostrome was directly influenced by the characteristics of the biocoenosis, including unpreserved burrowing taxa. Rudist biostromes may be of markedly different taphonomy as a result of the taxonomic composition of the entire assemblage and the density of colonization by the rudists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.