Abstract

The potential energy landscape of a polymer glass is examined with regard to plastic deformation under shear strain. Shear strain is found to cause the disappearance of local potential energy minima, as determined by the decrease to zero of the curvature of the local minima. If the local energy minimum which the system is in disappears, the system becomes mechanically unstable and is forced to relax to an alternate energy minimum. This mechanical instability, which leads to a discontinuous change in system properties, is inherently irreversible—the new local minimum will not disappear, in general, when the strains are reversed. These disappearances of local energy minima and the associated irreversible relaxations lead to plastic deformation in polymer glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.