Abstract

We investigate the effect of intergranular cohesive forces on the properties of self-diffusion in dense granular flows. The study is based on a series of simulated plane shear flows at different inertial and cohesion numbers, in which transverse diffusivities are measured. Results evidence an increase in diffusivity by up to two orders of magnitude when introducing cohesion. This strong effect is analysed using the Green–Kubo framework, expressing the diffusivity in terms of instantaneous grain velocity fluctuations and their time correlation. This analysis shows that cohesion, by forming enduring clusters in the flow, enhances the velocity fluctuations and their time persistence, which both contribute to enhancing grain mixing and self-diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.