Abstract
Some faults seem to slip at unusually high angles (>45°) relative to the orientation of the greatest principal compressive stress1, 2, 3, 4, 5. This implies that these faults are extremely weak compared with the surrounding rock6. Laboratory friction experiments and theoretical models suggest that the weakness may result from slip on a pre-existing frictionally weak surface7, 8, 9, weakening from chemical reactions10, elevated fluid pressure11, 12, 13 or dissolution–precipitation creep14, 15. Here we describe shear veins within the Chrystalls Beach accretionary melange, New Zealand. The melange is a highly sheared assemblage of relatively competent rock within a cleaved, anisotropic mudstone matrix. The orientation of the shear veins—compared with the direction of hydrothermal extension veins that formed contemporaneously—indicates that they were active at an angle of 80°±5° to the greatest principal compressive stress. We show that the shear veins developed incrementally along the cleavage planes of the matrix. Thus, we suggest that episodic slip was facilitated by the anisotropic internal fabric, in a fluid-overpressured, heterogeneous shear zone. A similar mechanism may accommodate shear at high angles to the greatest principal compressive stress in a range of tectonic settings. We therefore conclude that incremental slip along a pre-existing planar fabric, coupled to high fluid pressure and dissolution–precipitation creep, may explain active slip on severely misoriented faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.