Abstract

Suspensions of corn starch and water are the most common example of a shear thickening system. Investigations into the non-Newtonian flow behavior of corn starch slurries have ranged from simplistic elementary school demonstrations to in-depth rheological examinations that use corn starch to further elucidate the mechanisms that drive shear thickening. Here, we determine how much corn starch is required for the average person to “walk on water” (or in this case, run across a pool filled with corn starch and water). Steady shear rate rheological measurements were employed to monitor the thickening of corn starch slurries at concentrations ranging from 0 to 55wt.% (0–44vol.%). The steady state shear rate ramp experiments revealed a transition from continuous to discontinuous thickening behavior that exists at 52.5wt.%. The rheological data was then compared to macro-scopic (∼5gallon) pool experiments, in which thickening behavior was tested by dropping a 2.1kg rock onto the suspension surface. Impact-induced thickening in the “rock drop” study was not observed until the corn starch concentration reached at least 50wt.%. At 52.5wt.%, the corn starch slurry displayed true solid-like behavior and the falling rock “bounced” as it impacted the surface. The corn starch pool studies were fortified by steady state stress ramps which were extrapolated out to a critical stress value of 67,000Pa (i.e., the force generated by an 80kg adult while running). Only the suspensions containing at least 52.5wt.% (42vol.%) thickened to high enough viscosities (50–250Pas) that could reasonably be believed to support the impact of a man’s foot while running. Therefore, we conclude that at least 52.5wt.% corn starch is required to induce strong enough thickening behavior to safely allow the average person to “walk on water”.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.