Abstract

In the present paper the problem of brittle debonding between carbon-fiber plates (FRP) and concrete was studied by means of single lap shear tests. Driving the test by controlling the displacement of the free edge of the plate made it possible to describe the pull-out curve up to complete debonding, including the snap-back branch. This permitted to observe that, in the present tests, failure mode and brittleness strongly depend upon the bond length. In particular, specimens with long bond length display a snap-back in the pull-out curve, whereas specimens with short bond length display a softening. Besides, debonding occurs with a transition from mode II to a mixed mode fracture as the bond length decreases, showing different failure mechanisms and a remarkable reduction of the dissipated fracture energy. Moreover, the measured bond-slip relationships show a reduction of the bond strength close to the free edge of the plate that is caused by peeling stresses. Finally, results of the experimental tests are compared with finite element simulations with standard bond-slip laws.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.