Abstract
The statistical distribution of von Mises stress in the trabeculae of human vertebral cancellous bone was estimated using large-scale finite element models. The goal was to test the hypothesis that average trabecular von Mises stress is correlated to the maximum trabecular level von Mises stress. The hypothesis was proposed to explain the close experimental correlation between apparent strength and stiffness of human cancellous bone tissue. A three-parameter Weibull function described the probability distribution of the estimated von Mises stress (r2>0.99 for each of 23 cases). The mean von Mises stress was linearly related to the standard deviation (r2=0.63) supporting the hypothesis that average and maximum magnitude stress would be correlated. The coefficient of variation (COV) of the von Mises stress was nonlinearly related to apparent compressive strength, apparent stiffness, and bone volume fraction (adjusted r2=0.66, 0.56, 0.54, respectively) by a saturating exponential function [COV = A + B exp(-x/C)]. The COV of the stress was higher for low volume fraction tissue (<0.12) consistent with the weakness of low volume fraction tissue and suggesting that stress variation is better controlled in higher volume fraction tissue. We propose that the average stress and standard deviation of the stress are both controlled by bone remodeling in response to applied loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.