Abstract

Long nonlinear two-dimensional traveling waves on a film driven by laminar gas flow are investigated numerically via solving Navier-Stokes equations. The evolution of their shape, amplitude, and speed with increasing Reynolds number is studied. The existence of solitary waves is demonstrated. A comparison between shear driven and gravity-capillary waves is made and discussed. It is shown that shear driven waves as compared to gravity driven waves are much higher for equal film Reynolds numbers and much slower for equal wave amplitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.