Abstract

An analytical expression is derived for the shear dispersion during transport of a neutral nonreacting solute within a coupled system comprised of a capillary tube and a porous medium under the combined effects of pressure‐driven and electro‐osmotic flows. We use the Reynolds decomposition technique to obtain a dispersion coefficient by considering a sufficiently low wall or zeta potential that accounts for the combined flows. The coupled dispersion coefficient depends on the Debye–Hückel parameter, Poiseuille contribution fraction, and Péclet number. The developed model also provides a shear dispersion coefficient for an impervious capillary tube (noncoupled system). The ratio of the coupled (porous wall) and noncoupled (impervious) dispersion coefficients reveals that it is essential to include the transport of chemical species from the tube to the porous medium in several important physical situations. These findings have implications for design of chemical species transport in porous microfluidic networks and separation of emulsions in microchannel‐membrane systems. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3981–3995, 2015

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.