Abstract

The objective of this work is to provide insight into the expected slip demand in the shear connection of composite steel–concrete beams through the use of a numerically efficient nonlinear beam model previously validated by comparisons with experimental tests. The results of a parametric analysis involving 1680 simply supported beams are illustrated to investigate the influence that various design parameters (i.e. span length, degree of shear connection, steel beam and concrete slab cross-section geometry, connection distribution, dead load to live load ratio, propped and unpropped construction sequences, and concrete strength) and modelling parameters (i.e. shear connection representative strength and constitutive parameters) have on the slip demand. It is observed that, for a given shear connection degree, the most important parameters are the construction sequence, the span length, and the steel section shape. In addition, the shear connection distribution can have an important effect and non-uniform shear connection distributions with more connectors near the supports might be effective in limiting the slip demand. The results illustrated in this work can be a support for more efficient designs of the shear connection in composite steel–concrete beams and a basis for possible improvements of their current design recommendations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.