Abstract

CCS (Carbon Capture and Storage) is a promising technique for greenhouse effect mitigation by geological sequestration of CO2. Deep saline aquifers are considered the major storage reservoirs, mainly due to their abundance on the earth’s crust. Even though rock joint sets (fractures) are critical characteristics of rockmass (both for their mechanical and hydrological behavior), they are not simulated in detail in reservoir scale models for CO2 storage. That's due to significant demands for computational power and model design complexity. Advances in discrete medium models and discrete fracture network representation for models/reservoirs of considerable size will allow the usage of jointed rock as a discrete medium, for assessing reservoir hydromechanically. Hence, assessments of the performance under CO2 exposure of rock fractures inside CO2 environment will be necessary. In this study, we tested planar and rough, induced fractured sandstone specimens for shear mechanical behavior, under reservoir conditions. Results revealed a friction angle reduction (−23%) of exposed rough fractures, compared to unexposed ones. The moderate fracture roughness, even though still present, did not contribute as much to shear strength under effective normal stresses up to 1.5 MPa, with rough fractures behaving likewise to planar ones. Gouge production on fracture surfaces contributes to shear strength loss, calcite dissolution is considered the major reason for such behavior. We also observed inadequacy for shear resistance on planar exposed specimens when normal stress exceeds a critical value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.