Abstract

In the mammalian central nervous system, a diverse group of basic helix–loop–helix (bHLH) proteins is involved in the determination of progenitor cells and, subsequently, in regulating neuronal differentiation. Here we report the identification of a novel subfamily of bHLH proteins, defined by two mammalianenhancer-of-split- andhairy-related proteins, termed SHARP-1 and SHARP-2. In contrast to known bHLH genes, detectable transcription of SHARP genes begins at the end of embryonic development marking differentiated neurons that have reached a final position, and increases as postnatal development proceeds. In the adult, SHARP genes are expressed in subregions of the CNS that have been associated with adult plasticity. In PC12 cells, a model system to study neurite outgrowth, SHARP genes can be induced by NGF with the kinetics of an immediate-early gene. Similarly, within 1 h after the administration of kainic acidin vivo,SHARP-2 is induced in neurons throughout the rat cerebral cortex. This suggests that neuronal bHLH proteins are also involved in the “adaptive” changes of mature CNS neurons which are coupled to glutamatergic stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.