Abstract

We derive a new lower bound for the entropy dissipation associated with the spatially homogeneous Boltzmann equation. This bound is expressed in terms of the relative entropy with respect to the equilibrium, and thus yields a differential inequality which proves convergence towards equilibrium in relative entropy, with an explicit rate. Our result gives a considerable refinement of the analogous estimate by Carlen and Carvalho [9, 10], under very little additional assumptions. Our proof takes advantage of the structure of Boltzmann's collision operator with respect to the tensor product, and its links with Fokker–Planck and Landau equations. Several variants are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.