Abstract
We show that the maximum vertex degree in a random 3-connected planar triangulation is concentrated in an interval of almost constant width. This is a slightly weaker type of result than our earlier determination of the limiting distribution of the maximum vertex degree in random planar maps and in random triangulations of a (convex) polygon. We also derive sharp concentration results on the number of vertices of given degree in random planar maps of all three types. Some sharp concentration results about general submaps in 3-connected triangulations are also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.