Abstract

This paper presents the design and performance evaluation of an inexpensive testbed for network coding protocols composed of Raspberry Pis. First, we show the performance of random linear network coding primitives on the Raspberry Pi in terms of processing speed and energy consumption under a variety of configuration setups. Our measurements show that processing rates of up to 230 Mbps are possible with the Raspberry Pi. Also, the energy consumption per bit can be as small as 3 nJ/bit, which is several orders of magnitude smaller than the transmission/reception energy use. Surprisingly, overclocking the Raspberry Pi from 700 MHz to 1000 MHz not only produces an increase in processing speed of up to 68 % for large generation sizes, but also provides a reduction of 64 % in the processing energy per bit for most tested scenarios. Then, we show Raspberry Pi as an inexpensive, viable, and flexible platform to deploy large research networking testbeds for the evaluation of network coding protocols. We propose key parameters and representations to evaluate protocol performance in network nodes as well as validating the testbed's statistics using the case of a one-hop broadcast with random linear network coding, which is well understood in theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.