Abstract

Abstract We overview our recent theoretical results on spatio-spectral control, diffraction management, and broadband all-optical switching of polychromatic light in periodically curved one and two dimensional arrays of coupled optical waveguides. In particular, we show that polychromatic light beams and patterns produced by white-light and supercontinuum sources can experience wavelength-independent normal, anomalous, or zero diffraction in specially designed structures. We also demonstrate that in the nonlinear regime, it is possible to achieve broadband all-optical switching of polychromatic light in a directional waveguide coupler with special bending of the waveguide axes. Our results suggest novel opportunities for creation of all-optical logical gates and switches which can operate in a very broad frequency region, e.g., covering the entire visible spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.