Abstract

Abstract Catalysts were prepared by impregnation of Pt inside the pore structure of carbon fibers. Care was taken to eliminate the active metal from the external surface of the support. A very high dispersion of Pt was measured. Four reactions were carried out in a fixed-bed reactor: competitive hydrogenation of cyclohexene and 1-hexene, cyclization of 1-hexene, n-heptane conversion and dehydrogenation of cyclohexanol. Three types of carbon fibers with a different pore size and Pt-adsorption capacity along with a Pt on activated carbon commercial catalyst were tested. The data indicate a significant effect of the pore size dimension on the selectivity in each system. The ability to tailor the pore structure to achieve results drastically different from those obtained with established supports is demonstrated with heptane conversion. Pt on open pore carbon fibers show higher activity with the same selectivity as compared with Pt on activated carbon catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.