Abstract
The phase transition in odd nuclei when the underlying even-even core nuclei experience a transition from spherical to deformed {gamma}-unstable shapes is investigated. The odd particle is assumed to be moving in the three single-particle orbitals j=1/2,3/2, and 5/2 . At the critical point in the phase transition, an analytic solution to the corresponding Bohr Hamiltonian, called E(5/12), is worked out. Energy spectra and electromagnetic transitions and moments are presented. The same problem is also attacked in the framework of the interacting boson-fermion model (IBFM). Two different Hamiltonians are used. The first one is constructed ad hoc so as to mimic the situation in the E(5/12) model. The second one leads to the occurrence of the O{sup B}(6xU{sup F}(12) symmetry when the boson part approaches the O(6) condition. The entire transition line is studied with this Hamiltonian and, in particular, the critical point. Both IBFM calculations at the critical point are consistent with the E(5/12) results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.