Abstract

We investigate the embedding of Ge islands in a Si matrix by means of atomic force microscopy and photoluminescence (PL) spectroscopy. The Ge islands were grown between 360°C and 840°C and subsequently capped with Si at different temperatures. For the highest Ge growth temperature (840°C), we show that the surface flattens at high Si capping temperatures while new facets can be identified at the island base for intermediate capping temperatures (650–450°C). At low capping temperatures (300–350°C), the island morphology is preserved. In contrast to the observed island shape changes, the decreasing Si capping temperature causes only a small redshift of the island related PL signal for islands grown on high temperatures. This redshift increases for Ge islands grown at lower temperatures due to an increased Ge content in the islands. By applying low-temperature capping (300°C) on the different island types, we show that the emission wavelength can be extended up to 2.06 μm for hut clusters grown at 400°C. Further decreasing of the island growth temperature to 360°C leads to a PL blueshift, which is explained by charge carrier confinement in Ge quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.