Abstract

In this study, the analysis of a solid oxide fuel cell (SOFC) is conducted, starting at a high temperature under the assumption of a stress-free during cell sintering at that temperature level. The deformation during the temperature decrease after sintering is reflected not only in the initial shape of the cell at a low temperature, but also in the deformation behavior during operation. The time variation of the cell shape is clarified in terms of thermal, chemical, and creep strains. In these simulations, we use our previously developed analysis method for electrochemical and mechanical coupling phenomena by incorporating general-purpose finite element analysis software and its pre-/post-processing functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.