Abstract

We report the morphological and size tailored rational and facile synthesis of copper vanadate nanostructures via sonication assisted sol gel method. Field emission scanning electron microscopy (FESEM), indicated irregular and nanoflakes morphologies for the as synthesized copper vanadate (CV-120) and copper vanadate calcined at 250 °C (CV-250). The semispherical platelets shaped morphology revealed for the copper vanadate calcined at 550 °C (CV-500). The XRD patterns confirm the monoclinic and triclinic crystal phases for CV-250 and CV-500, respectively. The optical properties of CV-250 and CV-500 via UV-DRS showed significant absorption in the visible regime at λ = 565 nm and 670 nm with band gap 2.2 eV and 1.84 eV, respectively as calculated from Kubelka-Munk (KM) equation via Tauc’s plot. The values of band edge positions of CV-250 and CV-550 straddle with the hydrogen (HER) and oxygen evolution reaction (OER) potentials. The photoelectrodes of CV-250 and CV-500 fabricated by adsorption desorption method to test their photoelectrochemical (PEC) water splitting performance in the three-electrode cell. The onset photocurrent potential is observed at ~0.42 V, which reached to saturation at 1.05 V. The photocurrent density at saturation is ~0.65 mA/cm2 for CV-250 and CV-500, respectively.

Highlights

  • Photoelectrodes capable of absorbing radiation in the visible-light region are of primary interest to the PEC research community[3]

  • The aforementioned copper vanadates have been synthesized using hydrothermal, sputtering, solid-state synthesis methods with no data provided for the morphology and particle size effect on the water splitting performance

  • The morphological features of the samples explored through Field emission scanning electron microscopy (FESEM) and the micrographs taken at different resolutions

Read more

Summary

Introduction

Photoelectrodes capable of absorbing radiation in the visible-light region are of primary interest to the PEC research community[3]. Metal vanadates (Mx(VO4)y), is emerging a new class of photoelectrode material for PEC water splitting. Morphology and particle size further effect the overall current densities of these materials.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.