Abstract

We address the problem of recovering shape, albedo, and illumination from a single grayscale image of an object, using shading as our primary cue. Because this problem is fundamentally underconstrained, we construct statistical models of albedo and shape, and define an optimization problem that searches for the most likely explanation of a single image. We present two priors on albedo which encourage local smoothness and global sparsity, and three priors on shape which encourage flatness, outward-facing orientation at the occluding contour, and local smoothness. We present an optimization technique for using these priors to recover shape, albedo, and a spherical harmonic model of illumination. Our model, which we call SAIFS (shape, albedo, and illumination from shading) produces reasonable results on arbitrary grayscale images taken in the real world, and outperforms all previous grayscale “intrinsic image” - style algorithms on the MIT Intrinsic Images dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.