Abstract

AbstractThe waveforms of microearthquakes are of high frequency and complicated. They contain many phases secondarily generated at crustal interfaces and at small‐scale inhomogeneities. They are highly sensitive to focal mechanisms and thus very different for each station of local networks. However, with a large number of microearthquakes, the scattered waves present in the waveforms can serve for identifying the prominent crustal discontinuities and for determining their depth. In this paper, we develop a new approach for extracting information on crustal structure from such waveforms and apply it for determining depth and lateral variations of crustal discontinuities. We show that strong dependence of microseismic waveforms on radiation pattern requires good station coverage and knowledge of focal mechanisms of the microearthquakes. Analysis of real observations is supported by waveform modeling and by analysis of radiation patterns of scattered waves. The robustness of the inversion for depth of crustal interfaces is achieved by stacking of a large number of waveforms and by applying a grid search algorithm. The method is demonstrated on two microseismic data sets of different origin: microseismicity induced during the Continental Super‐Deep Drilling Project (KTB) 2000 fluid injection experiment and natural seismicity in the West Bohemia swarm region. High‐frequency conversions at the KTB site indicate a prominent interface at depths of 2.3–4.1 km consistent with previous interpretations. Geologically, it may represent the contact of granitoids with much faster metabasites underneath. Seismicity in West Bohemia indicates a strong‐contrast interface at depths of 3.5–6.0 km. This interface is in agreement with previous profiling and might be related to trapping of fluid emanations ascending from the mantle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.