Abstract

AbstractDuring direct development the butterfly Lycaena tityrus was previously found to display sex‐related reaction norms in response to temperature. Based on selection for protandry in males and fecundity selection for larger females, males favoured early emergence over large size, leading to a dramatic weight loss at higher temperatures, whereas females maintained similar weights throughout. Because males were able to avoid a weight reduction relative to females in spite of their shorter development at lower temperatures, sexual size dimorphism existed at higher temperatures only. In the present paper we compare sexual differences in life‐history traits in L. tityrus between direct and diapause development at 25 °C. We demonstrate that, regardless of developmental pathway, protandry persisted and relative sexual size dimorphism, with females being larger, remained unchanged. Although diapausing individuals were less time‐constrained, allowing them to grow to considerably higher final weights in both sexes, males were not able to reduce their weight loss relative to females. This is explained by the pressure to gain a developmental advantage solely during post‐diapause development, whereas direct developing males may spread the burden over the whole larval period. Our results highlight the importance of considering sexual differences in selective pressures, which may influence central life‐history traits in manifold ways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.