Abstract

In the Indian subcontinent, there are significant between-population variations in desiccation resistance in Drosophila melanogaster, but the physiological basis of adult acclimation responses to ecologically relevant humidity conditions is largely unknown. We tested the hypothesis that increased desiccation resistance in acclimated flies is associated with changes in cuticular permeability and/or content of energy metabolites that act as osmolytes. Under an ecologically relevant humidity regime (~50 % relative humidity), both sexes showed desiccation acclimation which persisted for 2-3 days. However, only females responded to acclimation at ~5 % relative humidity (RH). Acclimated flies exhibited no changes in the rate of water loss, which is consistent with a lack of plastic changes in cuticular traits (body melanization, epicuticular lipid). Therefore, changes in cuticular permeability are unlikely in drought-acclimated adult flies of D. melanogaster. In acclimated flies, we found sex differences in changes in the content of osmolytes (trehalose in females versus glycogen in males). These sex-specific changes in osmolytes are rapid and reversible and match to corresponding changes in the increased desiccation resistance levels of acclimated flies. Further, the increased content of trehalose in females and glycogen in males support the bound-water hypothesis for water retention in acclimated flies. Thus, drought acclimation in adult flies of D. melanogaster involves inducible changes in osmolytes (trehalose and glycogen), while there is little support for changes in cuticular permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.