Abstract

Differences in biological performance, at both intra- and inter-specific levels, have often been linked to morphology but seldom to behavioural or genotypic effects. We tested performance at the intraspecific level by measuring bite force in the African pygmy mouse, Mus minutoides. This species displays an unusual sex determination system, with sex-reversed, X*Y females carrying a feminizing X* chromosome. X*Y females cannot be differentiated from XX females based on external or gonadal morphology; however, they are known to be more aggressive. We found that bite force was higher in X*Y females than in other females and males. We then performed geometric morphometric analyses on their skulls and mandibles and found that the higher performance of X*Y females was mainly explained by a greater overall skull size. The effects of the X* chromosome thus go beyond feminization, and extend to whole-organism performance and morphology. Our results also suggest limited effects of behaviour on bite force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.