Abstract
This work aims to exploit a novel graph neural network to predict the sex of the brain topological network, and to find the sex differences in the cerebrum and cerebellum. A two-branch multi-scale graph convolutional network (TMGCN) is designed to analyze the sex differences of the brain. Two complementary templates are used to construct cerebrum and cerebellum networks, respectively, followed by a two-branch sub-network with multi-scale filters and a trainable weighted fusion strategy for the final prediction. Finally, a trainable graph topk-pooling layer is utilized in our model to visualize key brain regions relevant to the prediction. The proposed TMGCN achieves a prediction accuracy of 84.48%. In the cerebellum, the bilateral Crus I-II, lobule VI and VIIb, and the posterior vermis (VI-X) are discriminative for this task. As for the cerebrum, the discriminative brain regions consist of the bilateral inferior temporal gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral cingulate gyrus, the bilateral medial ventral occipital cortex, the bilateral lateral occipital cortex, the bilateral amygdala, and the bilateral hippocampus. This study tackles the sex prediction problem from a more comprehensive view, and may provide the resting-state fMRI evidence for further study of sex differences in the cerebellum and cerebrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interdisciplinary Sciences: Computational Life Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.