Abstract
Developmental environments can have lasting effects on an individual's phenotype. In many reptiles, for example, egg incubation temperature permanently determines offspring sex (temperature-dependent sex determination, TSD) and also influences a suite of morphological, physiological, and behavioral traits. Thus, the contributions of sex and incubation temperature to phenotypic variation are difficult to identify because these factors are confounded under TSD. We used chemical manipulations to experimentally decouple gonadal sex and incubation temperature in a turtle with TSD (Chrysemys picta) to examine their relative and interactive effects on variation in incubation duration and offspring size. We show that warm incubation temperature accelerates development as expected and that exogenous estradiol treatment to eggs further shortens incubation duration across all incubation temperatures. Moreover, estradiol unexpectedly induced male development, resulting in male offspring hatching sooner than female offspring. Variation in offspring size was also influenced by incubation temperature and gonadal sex, but interactions between these two variables were relatively small or nonsignificant. The fitness consequences of these effects are unknown, but we provide preliminary results from our attempts at examining the long-term and sex-specific effects of incubation temperature. Manipulative experimental approaches, combined with longer-term experiments that track individuals through reproduction, will provide novel insights into the adaptive significance of developmental plasticity in long-lived organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.