Abstract

In a conformal field theory, correlation functions on any Riemann surface are in principle unambiguously defined by sewing together three-point functions on the sphere, provided that the four-point functions on the sphere are crossing symmetric, and the one-point functions on the torus are modular covariant. In this work we extend Sonoda's proof of this result to conformal field theories defined on surfaces with boundaries. Four additional sewing constraints arise; three on the half-plane and one on the cylinder. These relate the various OPE coefficients in the theory (bulk, boundary, and bulk-boundary) to one another. In rational theories these relations can be expressed in terms of data arising solely within the bulk theory: the matrix S which implements modular transformations on the characters, and the matrices implementing duality transformations on the four-point conformal-block functions. As an example we solve these relations for the boundary and bulk-boundary structure constants in the Ising model with all possible conformally invariant boundary conditions. The role of the basic sewing constraints in the construction of open string theories is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.