Abstract
Coastal water quality is deteriorating worldwide. Water quality monitoring is therefore essential for public health risk evaluation and the management of water bodies. This study investigated the feasibility of using bacteriophages of Enterococcus faecalis as sewage-specific faecal indicators, together with physicochemical (dissolved oxygen, pH, temperature and total suspended solids) and biological parameters, to assess coastal water quality using multivariate analysis incorporating non-detects. The principal component and cluster analyses demonstrated that coastal water quality was mostly influenced by biological parameters, including Escherichia coli and total coliforms, which were found in all 31 sampling sites, and enterococci, which was found in all but two sampling sites. The enterococcal bacteriophages AIM06 and SR14 were detected in 17 and 18 samples at concentrations up to 1,815 and 2,790 PFU/100 mL, respectively. Both bacteriophages co-presented in approximately 80% of phage-positive samples, and the concentrations at each site were not significantly different. Overall, either bacteriophage could be used to differentiate high- and low-level coastal water pollution, as grouped by cluster analysis. This study is the first to investigate the suitability of sewage-specific bacteriophages of E. faecalis for monitoring coastal water quality and emphasises the importance of a multivariate analysis with non-detects to facilitate coastal water quality monitoring and management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water science and technology : a journal of the International Association on Water Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.