Abstract
Decreased capillary flow and heterogeneity of microvascular perfusion are hallmarks of septic circulatory disturbances, and the gastrointestinal mucosa is considered to be particularly prone to such abnormalities. We investigated the impact of Escherichia coli hemolysin (HlyA), a medically relevant pore-forming bacterial toxin, on the mucosal microvasculature in a constant-flow blood-perfused rabbit ileum model. Microsensor techniques were employed to assess spatial distribution of mucosal hemoglobin oxygenation and relative mucosal hemoglobin content, as well as mucosal-arterial PCO(2) gap. Administration of low doses of HlyA (0.005 to 0.1 hemolytic units [HU]/ml) into the mesenteric artery provoked a transient vasoconstrictor response. Whereas physiological mucosal oxygenation is homogeneous, severe heterogeneity in capillary blood flow distribution appeared, paralleled by a marked increase in the mucosal-arterial PCO(2) gap. In addition, HlyA provoked a dose-dependent increase in relative hemoglobin concentration (rel Hb(conc)) values and edema formation, suggesting postcapillary vasoconstriction and capillary leakage. The observed changes occurred while fully maintaining mesenteric oxygen delivery. We conclude that low doses of HlyA may elicit severe mucosal microcirculatory disturbances in the rabbit ileum under maintenance of global hemodynamics, reminiscent of septic perfusion abnormalities. Pore-forming bacterial toxins may thus be considered as contributors to splanchnic mucosal damage under conditions of severe infection and sepsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of respiratory and critical care medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.