Abstract
A new approach to optimizing or hedging a portfolio of financial instruments to reduce risk is presented. Central to this approach are concepts and tools of set-optimization theory. It focuses on the problem of minimizing set-valued risk measures applied to portfolios. We present sufficient conditions for the existence of solutions of a set-valued risk minimization problem under some semi-continuity assumption. The methodology is applied to the optimization of set-valued Value at Risk and Average Value at Risk. Two examples at the end illustrate various features of the theoretical construction, among them the geometry of the image sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.