Abstract

SummaryIn this paper, a set‐membership parity space approach for linear uncertain dynamic systems is proposed. First, a set of parity relations derived from the parity space approach is obtained by means of a transformation derived from the system characteristic polynomial. As a result of this transformation, parity relations can be expressed in regressor form. On the one hand, this facilitates the parameter estimation of those relations using a zonotopic set‐membership algorithm. On the other hand, fault detection is then based on checking, at every sample time, the non‐existence of a parameter value in the parameter uncertainty set such that the model is consistent with all the system measurements. The proposed approach is applied to two examples: a first illustrative case study based on a two‐tank system and a more realistic case study based on the wind turbine fault detection and isolation benchmark in order to evaluate its effectiveness. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.