Abstract

Normal, nonimmune adult serum is known to inhibit in vitro immune responses when present in sufficient amounts. The significance of inhibition of the immune response by serum, however, is not known. Previous work suggested that normal mouse plasma or serum (NMS) was selectively more inhibitory to nonantigen-specific (e.g., polyclonal) as compared to antigenspecific responses. This led to the hypothesis that constituents of serum (or plasma) may serve naturally to minimize the polyclonal type of antibody response, preserving immune specificity. The present study further examined the effect of NMS on polyclonal versus antigen-specific antibody responses. Under the in vitro assay conditions used, 0.5% NMS supported bacterial endotoxin (ET)-induced mitogenic and polyclonal B lymphocyte responses, antigen (SRBC, TNP-KLH)-specific antibody (IgM, IgG) responses, and antigen-induced or -specific T-lymphocyte proliferative responses, while 5% NMS inhibited all of these responses. However, antigenspecific T-lymphocyte responses could be restored by a 10-fold increase in the antigen concentration and antigen-specific antibody responses could be restored by the addition of ET (10 μg/ml) as adjuvant. On the other hand, the mitogenic response to ET remained suppressed regardless of ET concentration. Thus, despite significant reduction of the mitogenic and polyclonal properties of ET in 5% NMS (> 70% suppression), sufficient antigenic stimuli permitted optimal specific T- and B-cell responses. Many naturally occurring antigens e.g., bacterial, fungal, and viral, have inherent B-cell mitogenic and polyclonal activity in addition to adjuvanticity and the presence of the serum inhibitory factor may serve to minimize their indiscriminate polyclonal stimulation of antibody.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.