Abstract

Nutritional studies rely on various biological specimens for FA determination, yet it is unclear how levels of serum NEFAs correlate with other circulating lipid pools. Here, we used a high-throughput method (<4 min/sample) based on multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry (MSI-NACE-MS) to investigate whether specific serum NEFAs have utility as biomarkers of dietary fat intake in women. We first identified circulating NEFAs correlated with long-term/habitual food intake among pregnant women with contrasting dietary patterns (n = 50). Acute changes in serum NEFA trajectories were also studied in nonpregnant women (n = 18) following high-dose (5 g/day) fish oil (FO) supplementation or isoenergetic sunflower oil placebo over 56 days. In the cross-sectional study, serum ω-3 FAs correlated with self-reported total ω-3 daily intake, notably EPA as its NEFA (r = 0.46; P = 0.001), whereas pentadecanoic acid was associated with full-fat dairy intake (r = 0.43; P = 0.002), outcomes consistent with results from total FA serum hydrolysates. In the intervention cohort, serum ω-3 NEFAs increased 2.5-fold from baseline within 28 days following FO supplementation, and this increase was most pronounced for EPA (P = 0.0004). Unlike for DHA, circulating EPA as its NEFA also strongly correlated to EPA concentrations measured from erythrocyte phospholipid hydrolysates (r = 0.66; P = 4.6 × 10-10) and was better suited to detect dietary nonadherence. We conclude that MSI-NACE-MS offers a rapid method to quantify serum NEFAs and objectively monitor dietary fat intake in women that is complementary to food-frequency questionnaires.

Highlights

  • Nutritional studies rely on various biological specimens for FA determination, yet it is unclear how levels of serum NEFAs correlate with other circulating lipid pools

  • Each run consisted of a serial injection of six randomized serum samples together with a quality control (QC) as shown in Fig. 1A for representative serum NEFAs annotated by their characteristic m/z:relative migration time (RMT)

  • Previous method validation studies demonstrated good mutual agreement for serum FA determination when using MSINACE-MS compared with GC-MS [26], which is optimal for higher-throughput NEFA screening (

Read more

Summary

Introduction

Nutritional studies rely on various biological specimens for FA determination, yet it is unclear how levels of serum NEFAs correlate with other circulating lipid pools. We used a high-throughput method (

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.