Abstract

BackgroundNeurofilaments are cytoskeletal proteins that are detectable in the blood after neuroaxonal injury. Multiple sclerosis (MS) disease progression, greater lesion volume, and brain atrophy are associated with higher levels of serum neurofilament light chain (NfL), but few studies have examined the relationship between NfL and advanced magnetic resonance imaging (MRI) measures related to myelin and axons. We assessed the relationship between serum NfL and brain MRI measures in a diverse group of MS participants. Methods and materials103 participants (20 clinically isolated syndrome, 33 relapsing-remitting, 30 secondary progressive, 20 primary progressive) underwent 3T MRI to obtain myelin water fraction (MWF), geometric mean T2 (GMT2), water content, T1; high angular resolution diffusion imaging (HARDI)-derived axial diffusivity (AD), radial diffusivity (RD), fractional anisotropy (FA); diffusion basis spectrum imaging (DBSI)-derived AD, RD, FA; restricted, hindered, water and fiber fractions; and volume measurements of normalized brain, lesion, thalamic, deep gray matter (GM), and cortical thickness. Multiple linear regressions assessed the strength of association between serum NfL (dependent variable) and each MRI measure in whole brain (WB), normal appearing white matter (NAWM) and T2 lesions (independent variables), while controlling for age, expanded disability status scale, and disease duration. ResultsSerum NfL levels were significantly associated with metrics of axonal damage (FA: R2WB-HARDI = 0.29, R2NAWM-HARDI = 0.31, R2NAWM-DBSI = 0.30, R2Lesion-DBSI = 0.31; AD: R2WB-HARDI=0.31), myelin damage (MWF: R2WB = 0.29, R2NAWM = 0.30, RD: R2WB-HARDI = 0.32, R2NAWM-HARDI = 0.34, R2Lesion-DBSI = 0.30), edema and inflammation (T1: R2Lesion = 0.32; GMT2: R2WB = 0.31, R2Lesion = 0.31), and cellularity (restricted fraction R2WB = 0.30, R2NAWM = 0.32) across the entire MS cohort. Higher serum NfL levels were associated with significantly higher T2 lesion volume (R2 = 0.35), lower brain structure volumes (thalamus R2 = 0.31; deep GM R2 = 0.33; normalized brain R2 = 0.31), and smaller cortical thickness R2 = 0.31). ConclusionThe association between NfL and myelin MRI markers suggest that elevated serum NfL is a useful biomarker that reflects not only acute axonal damage, but also damage to myelin and inflammation, likely due to the known synergistic myelin-axon coupling relationship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.