Abstract
Serotonin (5-HT) is a hormone that has been implicated in the regulation of many physiological and pathological events. One of the most intriguing properties of this hormone is its ability to up-regulate mitosis. Moreover, 5-HT stimulates glucose uptake and up-regulates PFK activity through the 5-HT(2A) receptor, resulting in the phosphorylation of a tyrosine residue of PFK and the intracellular redistribution of PFK within skeletal muscle. The present study investigated some of the signaling intermediates involved in the effects of 5-HT on 6-phosphofructo-1-kinase (PFK) regulation from skeletal muscle using kinetic assessments, immunoprecipitation, and western blotting assays. Our results demonstrate that 5-HT stimulates PFK from skeletal muscle via phospholipase C (PLC). The activation of PLC in skeletal muscle leads to the recruitment of protein kinase C (PKC) and calmodulin and the stimulation of calmodulin kinase II, which associates with PFK upon 5-HT action. Alternatively, 5-HT loses its ability to up-regulate PFK activity when Janus kinase is inhibited, suggesting that 5-HT is able to control glycolytic flux in the skeletal muscle of mice by recruiting different pathways and controlling PFK activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.